An Indoor Positioning Technique Based on a Feed-forward Artificial Neural Network Using Levenberg-marquardt Learning Method
نویسندگان
چکیده
This paper presents an indoor positioning technique based on a multi-layer feed-forward (MLFF) artificial neural networks (ANN). Most of the indoor received signal strength (RSS)-based WLAN positioning systems use the fingerprinting technique that can be divided into two phases: the offline (calibration) phase and the online (estimation) phase. In this paper, RSSs were collected for all references points in four directions and two periods of time (Morning and Evening). Hence, RSS readings were sampled at a regular time interval and specific orientation at each reference point. The proposed ANN based model used Levenberg–Marquardt algorithm for learning and fitting the network to the training data. This RSS readings in all references points and the known position of these references points was prepared for training phase of the proposed MLFF neural network. Eventually, the average positioning error for this network using 30% check and validation data was computed approximately 2.20 meter.
منابع مشابه
Prediction of the Liquid Vapor Pressure Using the Artificial Neural Network-Group Contribution Method
In this paper, vapor pressure for pure compounds is estimated using the Artificial Neural Networks and a simple Group Contribution Method (ANN–GCM). For model comprehensiveness, materials were chosen from various families. Most of materials are from 12 families. Vapor pressure data of 100 compounds is used to train, validate and test the ANN-GCM model. Va...
متن کاملCalibration of an Inertial Accelerometer using Trained Neural Network by Levenberg-Marquardt Algorithm for Vehicle Navigation
The designing of advanced driver assistance systems and autonomous vehicles needs measurement of dynamical variations of vehicle, such as acceleration, velocity and yaw rate. Designed adaptive controllers to control lateral and longitudinal vehicle dynamics are based on the measured variables. Inertial MEMS-based sensors have some benefits including low price and low consumption that make them ...
متن کاملTraffic matrix estimation using the Levenberg- Marquardt neural network of a large IP system
This paper deals with a method using a specific class of neural networks whose learning phase is based on the Levenberg-Marquardt algorithm and which had been applied to the estimation of the traffic matrix (TM) of a large scale IP network. The neural network had been implemented with the help of the specific neural toolbox of the source software Matlab. Such neural networks are within the clas...
متن کاملNeurocomputational Approach for Feed-Position Estimation in Circular Micro-strip Antenna
This paper presents a neurocomputational model for estimation of feed-position in circular microstrip antenna. The difficulty in computing the feed position in circular microstrip antenna lies due to the involvement of a large number of physical parameters including their associated optimal values. It is indeed very difficult to formulate an exact numerical solution merely on practical observat...
متن کاملTemperature-Based Feed-Forward Backpropagation Artificial Neural Network For Estimating Reference Crop Evapotranspiration In The Upper West Region
The potential of modeling the FAO Penman-Monteith (FAO-56 PM) method for computing reference crop evapotranspiration (ETo) using feed-forward backpropagation artificial neural networks (FFBANN) with minimal measured climate data such as with the air temperature (maximum and minimum) was investigated using local climatic data from the Wa Meteorological weather station. Three FFBANN models were d...
متن کامل